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The zero distribution of orthogonal polynomials pn, N, n=0, 1, ... generated by
recurrence coefficients an, N and bn, N depending on a parameter N has been recently
considered by Kuijlaars and Van Assche under the assumption that an, N and bn, N
behave like a(n/N) and b(n/N), respectively, where a( · ) and b( · ) are continuous
functions. Here, we extend this result by allowing a( · ) and b( · ) to be measurable
functions so that the presence of possible jumps is included. The novelty is also in
the sense of the mathematical tools since, instead of applying complex analysis
arguments, we use recently developed results from asymptotic matrix theory due to
Tyrtyshnikov, Serra Capizzano, and Tilli. © 2001 Academic Press
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1. INTRODUCTION

A three term recurrence relation of the form

xpn(x)=an+1 pn+1(x)+bn pn(x)+an pn−1(x), p0 — 1, p−1 — 0,(1)

where an > 0 and bn ¥ R generates by Favard’s theorem a sequence of
polynomials orthonormal with respect to a probability measure on the real
line. It is well known that the zeros of the orthogonal polynomials pn are



real and simple, and belong to the convex hull of the support of the
orthogonality measure. The asymptotic distribution of the zeros of the
sequence {pn} of orthogonal polynomials has been studied extensively, see
e.g. [9, 20] and the references cited therein. We say that the Borel measure
m on R is the asymptotic zero distribution of {pn} if the limit relation

lim
nQ.

1
n
C
n

j=1
F(xj, n)=F F(x) dm(x),

where xj, n, j=1, ..., n are the zeros of pn, holds for F ¥ C0, where C0
denotes the space of all continuous functions on R with bounded support.

For the case where the sequence {an} converges to a limit a > 0 and the
sequence {bn} converges to b ¥ R, Nevai [9, Theorem 5.3] proved that the
asymptotic zero distribution is equal to the arcsine measure of the interval
[b − 2a, b+2a], i.e., the measure w(a, b) with density

dw(a, b)
dx

=˛
1

p`(b+2a − x)(x − b+2a)
if x ¥ (b − 2a, b+2a),

0 otherwise.

(2)

This result may be obtained in a number of ways. One way is to observe
that the zeros of pn are the eigenvalues of the Hermitian tridiagonal Jacobi
matrix Jn defined as

Jn=|
b0 a1

a1 b1 a2

a2 z z

z z an−1

an−1 bn−1

} .
If the limits a=lim an and b=lim bn exist, then the Jacobi matrix Jn can be
seen as a perturbation of the nth section of the infinite Toeplitz matrix
generated by b+2a cos x (see [19] for more details). More precisely, for
any e > 0, we have that

Jn=Tn(b+2a cos x)+Rn(e)+Dn(e),(3)

where Tn(f) is the nth section of the infinite Toeplitz matrix generated by
f, and where

rank Rn(e) [ C(e),(4)
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with a constant C(e) independent of n, and

||Dn(e)|| [ e.(5)

The norm used in (5) is the spectral norm, i.e., the largest singular value.
Tyrtyshnikov (see [18, Theorem 3.1]) studied such low-rank/small-norm
perturbations and he proved that (3)–(5) imply that the matrix sequences
{Jn} and {Tn(b+2a cos x)} have the same asymptotic eigenvalue distri-
bution. The asymptotic eigenvalue distribution of a Toeplitz sequence
{Tn(f)} generated by a real-valued, bounded f is well known from Szegő’s
work [4] to be the measure m satisfying

F F(x) dm(x)=
1

2p
F
2p

0
F(f(x)) dx(6)

for every F ¥ C0. For f(x)=b+2a cos x, this yields the measure m=
w(a, b) as given by (2).

A further step is to consider a family of recurrence relations like (1)
where the coefficients an=an, N and bn=bn, N depend on a parameter N.
With the help of complex analysis and potential theory, Kuijlaars and
Van Assche [6] proved the following result.

Theorem 1.1 [6]. Let for each N ¥N, two sequences {an, N}n, an, N > 0
and {bn, N}n of recurrence coefficients be given, together with orthogonal
polynomials pn, N generated by the recurrence

xpn, N(x)=an+1, N pn+1, N(x)+bn, N pn, N(x)+an, N pn−1, N(x),(7)

and the initial conditions p0, N — 1 and p−1, N — 0. Suppose that there exist two
continuous functions a: (0,.) Q [0,.), b: (0,.) Q R, such that for every
t > 0,

lim
n, NQ.
n/NQ t

an, N=a(t), and lim
n, NQ.
n/NQ t

bn, N=b(t).(8)

Then we have for every t > 0 and for every F ¥ C0

lim
n, NQ.
n/NQ t

1
n
C
n

j=1
F(xj, n, N)=F F(x) dmt(x),(9)

where xj, n, N, j=1, ..., n, are the zeros of pn, N,

mt=
1
t
F
t

0
w(a)(s), b(s)) ds,(10)
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and w(a, b) is the arcsine measure of the interval [b − 2a, b+2a] as defined
in (2) if a > 0, and w(a, b) is the unit Dirac measure in b if a=0.

The limits in (8) mean that for every choice of sequences {nj} and {Nj}
such that nj, Nj Q., and nj/Nj Q t as j Q. one has

lim
jQ.

anj, Nj=a(t), and lim
jQ.

bnj, Nj=b(t).

We use lim n, NQ.
n/NQ t

in this sense also in (9) and in the rest of the paper.

See [21] for an extension of Theorem 1.1 to asymptotically periodic
recurrence coefficients.

Note that (9)–(10) may also be written as

lim
n, NQ.
n/NQ t

1
n
C
n

j=1
F(xj, n, N)=

1
pt

F
t

0
F
p

0
F(b(s)+2a(s) cos x) dx ds.(11)

It is the aim of this paper to study the asymptotic zero distribution of
orthogonal polynomials with varying recurrence coefficients in the light of
recent advances in asymptotic matrix analysis, starting with the work of
Tyrtyshnikov already referred to above, and continued by Tilli and Serra
Capizzano. In fact, Theorem 1.1 can be deduced from the work of Tilli
[17] on locally Toeplitz sequences. Intuitively, a sequence of matrices {An}
is locally Toeplitz if for large n, and for k small with respect to n, the
matrix entries (An)i, j and (An)i+k, j+k are close to each other. Then on a
small scale, the matrix is almost a Toeplitz matrix. Globally the matrix is
not Toeplitz, but on each of the diagonals of An the entries change only
gradually. Theorem 1.1 may be viewed in this way. Indeed, the zeros of
pn, N are eigenvalues of the Jacobi matrix

Jn, N=|
b0, N a1, N

a1, N b1, N a2, N

a2, N z z

z z an−1, N

an−1, N bn−1, N

}(12)

and if n and N are large with n % tN, then, under the assumptions of the
theorem, the entries vary gradually along the three diagonals.

These considerations led Tilli to the definition of locally Toeplitz
sequence [17, Definition 1.3]. It is maybe a bit unfortunate (see [14] for a
slightly different notion) that the matrices (12) do not form a locally
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Toeplitz sequence as n, N Q. such that n/N Q t, but instead they are the
sum of two locally Toeplitz sequences with Jn, N=Bn, N+An, N,

Bn, N=|
b0, N 0

0 b1, N

z 0

0 bn−1, N

}
and

An, N=|
0 a1, N

a1, N 0 z

z z an−1, N

an−1, N 0

} .
Tilli [17, Section 5] showed that the sequence {Bn, N} with n, N Q. and
n/N Q t is locally Toeplitz with respect to (bt, 1), and the sequence {An, N}
is locally Toeplitz with respect to (at, f), where

at(x)=a(ts), bt(s)=b(ts), f(x)=2 cos x.

Then it follows from [17, Theorem 3.7] that the eigenvalues of Jn, N, which
we denote by xj, n, N, j=1, ..., n satisfy

lim
n, NQ.
n/NQ t

1
n
C
n

j=1
F(xj, n, N)=

1
2p

F
1

0
F
2p

0
F(bt(s)+at(s) f(x)) dx ds

=
1

2p
F
1

0
F
2p

0
F(b(ts)+2a(ts) cos x) dx ds

for every F ¥ C0. This is clearly equivalent with (11).

2. STATEMENT OF RESULTS

In this paper we want to use recent results in matrix analysis to weaken
the hypotheses on the recurrence coefficients {an, N} and {bn, N} in
Theorem 1.1. The limit relations (8) assumed by Kuijlaars and Van Assche
in Theorem 1.1 express a certain uniform convergence and force the func-
tions a(t) and b(t) to be continuous. Here we present a generalization
where we only assume a(t) and b(t) to be measurable functions.
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Our main result is the following. As usual, [x] denotes the largest integer
less than or equal to x.

Theorem 2.1. Let for each N ¥N, two sequences {an, N}n, an, N > 0 and
{bn, N}n of recurrence coefficients be given, together with orthogonal polyno-
mials pn, N generated by the recurrence

xpn, N(x)=an+1, N pn+1, N(x)+bn, N pn, N(x)+an, N pn−1, N(x), n \ 0,

and the initial conditions p0, N — 1 and p−1, N — 0. Suppose that there exist two
measurable functions a: [0,.) Q [0,.) and b: [0,.) Q R such that for
every t > 0 and every e > 0,

lim
NQ.

meas{s ¥ [0, t] | |a[sN], N − a(s)| \ e}=0,(13)

and

lim
NQ.

meas{s ¥ [0, t] | |b[sN], N − b(s)| \ e}=0.(14)

Then we have for every t > 0 and every F ¥ C0,

lim
n, NQ.
n/NQ t

1
n
C
n

j=1
F(xj, n, N)=

1
2p

F
t

0
F
p

0
F(b(s)+2a(s) cos x) dx ds,

where xj, n, N, j=1, ..., n, are the zeros of pn, N.

The assumptions (13)–(14) are equivalent to saying that the functions
s W a[sN], N and s W b[sN], N converge in measure on every bounded interval
to the functions a and b, respectively. This type of convergence is con-
siderably more general than the convergence implied by (8).

Of particular interest is the situation where the recurrence coefficients
an, N and bn, N are exact samples of two functions a and b, i.e.,

an, N=a(n/N), and bn, N=b(n/N).(15)

This situation arises for example in the analysis of a continuum limit of
the Toda lattice [1, 2, 5]. Also the discretization of a one-dimensional
boundary value problem

˛ − d
dx
1p(x)

d
dx

u(x)2+q(x) u(x)=f(x), x ¥ (0, 1),

u(0)=u(1)=0,
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on a uniformly spaced grid using centered finite differences leads to a linear
system with tridiagonal matrix (12) having entries of the form (15) for
certain functions a and b related to p and q, cf. [10, 13, 15, 17].

The appropriate condition on the functions a and b when the coefficients
an, N and bn, N satisfy (15) is now stated in terms of Riemann integrability.
As a consequence of Theorem 2.1 we have:

Corollary 2.2. Let for each N ¥N, the sequences {an, N}n, an, N > 0 and
{bn, N}n of recurrence coefficients be given by (15) where the functions
a: [0,.) Q (0,.) and b: [0,.) Q R satisfy for every t > 0,

(a) for every d > 0, there is M > 0 such that the set

{s ¥ [0, t] | a(s) \ M or |b(s)| \ M}

is contained in a finite union of intervals of total length [ d.

(b) for every M > 0, the cut-off functions

s W min(a(s), M) and s W min(max(b(s), −M), M)(16)

are Riemann integrable on the interval [0, t].

Let the orthogonal polynomials pn, N be generated by the recurrence

xpn, N(x)=an+1, N pn+1, N(x)+bn, N pn, N(x)+an, N pn−1, N(x), n \ 0,

with p0, N — 1 and p−1, N — 0. Then we have for every t > 0 and every F ¥ C0,

lim
n, NQ.
n/NQ t

1
n
C
n

j=1
F(xj, n, N)=

1
pt

F
t

0
F
p

0
F(b(s)+2a(s) cos x) dx ds,

where xj, n, N, j=1, ..., n are the zeros of pn, N.

Proof. The functions a and b are measurable.
Let e > 0 and d > 0. By assumption (a) there is an M > 0 and a finite

union of intervals Id … [0, t] of total length at most d such that a(s) [ M
for s ¥ [0, t]0Id. By assumption (b) the function f(s) :=min(a(s), M) is
Riemann integrable on [0, t]. The Riemann integrability implies that there
exists an N0 such that for every N \ N0 one has

1
N

C
[tN]

k=0
( sup
s ¥ [k/N, (k+1)/N]

f(s) − inf
s ¥ [k/N, (k+1)/N]

f(s)) < ed.(17)

Let N \ N0. It follows from (17) that the number of k [ [tN] for which

sup
s ¥ [k/N, (k+1)/N]

|f(k/N) − f(s)| \ e,
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is less than dN. Since Id has total length at most d, there are less than
dN+2a values of k [ [tN] for which [k/N, (k+1)/N] 5 Id ]”. Here a is
the number of intervals of Id. By definition of f and Id this means that
there are less than dN+2a values of k [ [tN] for which f(s) ] a(s) for
some s ¥ [k/N, (k+1)/N]. Hence there are less than 2dN+2a values of
k [ [tN] for which

sup
s ¥ [k/N, (k+1)/N]

|a(k/N) − a(s)| \ e.

Since ak, N=a(k/N) this gives

meas{s ¥ [0, t] | |a[sN], N − a(s)| \ e} [
2dN+2a

N
.

Letting first N Q., and then dQ 0+, we find that (13) holds. In a similar
way we prove (14), and the corollary follows from Theorem 2.1. L

As a second application we apply Theorem 2.1 to the case of a single
sequence of orthogonal polynomials. The following extends results of
Nevai [9], Geronimo, Harrell and Van Assche [3], and Mercer [7, 8].

Corollary 2.3. Let {an}n, an > 0, and {bn}n be two sequences, generat-
ing the orthogonal polynomials pn by the recurrence

xpn(x)=an+1 pn+1(x)+bn pn(x)+an−1 pn−1(x).

Let a \ 0 and b ¥ R be constants such that for every e > 0,

#{k [ n | |ak − a| \ e}=o(n) as n Q.,(18)

and

#{k [ n | |bk − b| \ e}=o(n) as n Q..(19)

Then we have for every F ¥ C0,

lim
nQ.

1
n
C
n

j=1
F(xj, n)=

1
p
F
p

0
F(b+2a cos x) dx,(20)

where xj, n, j=1, ..., n are the zeros of pn.

Proof. We write an, N=an and bn, N=bn, for every N ¥N. Then for
every e > 0,

meas{s ¥ [0, 1] | |a[sN], N − a| \ e}=(1/N) · #{k < N | |ak − a| \ e}
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tends to 0 as N Q. because of (18). Thus (13) holds with t=1. Similarly
(19) implies that (14) holds with t=1. Taking n=N and the constant
functions a(s) — a, b(s) — b in Theorem 2.1, we obtain (20). L

3. PROOF OF THEOREM 2.1

Our main tool is an extension of results of Tyrtyshnikov [18,
Theorem 3.1] and Tilli [17, Proposition 2.7] due to Serra Capizzano
[12, Proposition 2.3]. For an n × n Hermitian matrix A, we denote by
l1(A), ..., ln(A) its eigenvalues numbered in nondecreasing order.

Theorem 3.1. Let {An}n be a sequence of Hermitian matrices with An of
order n. Suppose for every e > 0, there exists ne ¥N, such that for every
n \ ne, there is a splitting

An=Bn(e)+Rn(e)+Dn(e),

where Bn(e), Rn(e), Dn(e) are Hermitian matrices such that for n \ ne,

rank Rn [ C1(e) n and ||Dn(e)|| [ C2(e),(21)

where C1(e) and C2(e) are positive constants independent of n, such that

lim
eQ 0+

C1(e)=0, and lim
eQ 0+

C2(e)=0.(22)

Suppose that for every e > 0 and F ¥ C0 the limit

lim
nQ.

1
n
C
n

j=1
F(lj(Bn(e)))=Fe(F)

exists and that in addition for every F ¥ C0, the limit

lim
eQ 0+

Fe(F)=F(F)

exists. Then for every F ¥ C0,

lim
nQ.

1
n
C
n

j=1
F(lj(An))=F(F).

Proof. See [12, Proposition 2.3]. L
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Proof of Theorem 2.1. Fix t > 0 and let e > 0. By Lusin’s theorem (see
e.g. [11]), there exist continuous functions ae and be on [0,.) such that

meas{s ¥ [0, t] | ae(s) ] a(s)} [ e,(23)

and

meas{s ¥ [0, t] | be(s) ] b(s)} [ e.(24)

Here meas denotes the Lebesgue measure.
Let n, N ¥N be large but fixed (for the moment). Let Jn, N be the n × n

matrix built out of the recurrence coefficients ak, N and bk, N as in (12), and
let Jn, N(e) be the n × n tridiagonal matrix obtained from ae and be by
sampling at spacing 1/N. Thus

Jn, N(e)=|
be(0/N) ae(1/N)

ae(1/N) be(1/N) ae(2/N)

ae(2/N) z z

z z ae((n − 1)/N)

ae((n − 1)/N) be((n − 1)/N)

} .
The difference Jn, N − Jn, N(e) has entries bn, N − be(k/N), k=0, ..., n − 1,

on the diagonal, and ak, N − ae(k/N) on the first sub and superdiagonals.
We let

Jn, N − Jn, N(e)=Rn, N(e)+Dn, N(e),(25)

where Dn, N(e) has the entries of Jn, N − Jn, N(e) that are in modulus smaller
than 2e, while Rn, N(e) has those entries that are in modulus at least 2e. The
other entries of Dn, N(e) and Rn, N(e) are zero.

Since Dn, N(e) is a tridiagonal matrix whose entries are all smaller than 2e,
we have for its spectral norm,

||Dn, N(e)|| < 6e.(26)

To estimate the rank of Rn, N(e) we are going to find an upper bound for
the number of its non-zero entries. We concentrate on the diagonal entries.

Because of assumption (14) there is a measurable set E1 with meas
E1 < e, and an N0 ¥N such that for every N \ N0, we have

|b[sN], N − b(s)| < e, for s ¥ [0, t]0E1.

Then by (24) there is a measurable set E2 with meas E2 < 2e such that

|b[sN], N − be(s)| < e for s ¥ [0, t]0E2.(27)
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Define

K(n, N, e)=3k ¥ {0, 1, ..., n − 1} : 5 k
N

,
k+1

N
2 5 ([0, t]0E2) ]”4 .

(28)

It follows from (27) and the fact that meas E2 [ 2e that

#K(n, N, e) \ min(n, tN) − 2eN.(29)

Since be is continuous, it is uniformly continuous on [0, t]. Therefore
there is d > 0 such that for every s1, s2 ¥ [0, t] with |s1 − s2 | < d, we have
|be(s1) − be(s2)| < e.

Let now N \ N1 :=max(N0, 1/d). If k ¥ K(n, N, e) then because of (27)
and (28) there exists s ¥ [k/N, (k+1)/N) such that |bk, N − be(s)| < e. Then
|k/N − s| < 1/N < d so that |be(s) − be(k/N)| < e. Hence

|bk, N − be(k/N)| < 2e, for k ¥ K(n, N, e).(30)

It follows from the construction of Rn, N(e) and (30) that the (k+1, k+1)-
entry of Rn, N(e) is zero if k ¥ K(n, N, e). Then (29) implies that the number
of non-zero diagonal entries of Rn, N(e) is at most

n −min(n, tN)+2eN=max(0, n − tN)+2eN.

This holds provided N \ N1.
In a similar way, we show that there exists N2 such that the total number

of non-zero entries on the sub and superdiagonals of Rn, N(e) is at most
2(max(0, n − tN)+2eN) for N \ N2. Hence the total number of non-zero
entries of Rn, N(e) is at most 3 max(0, n − tN)+6eN if N \ max(N1, N2) and
therefore,

rank Rn, N(e) [ 3 max(0, n − tN)+6eN, for N \ max(N1, n2).(31)

All of this holds for fixed n and N with N large enough. We now let
n, N Q. in such a way that n/N Q t. Then max(0, n − tN)=o(n) as
n Q.. It follows from (31) that for n (and corresponding N) large enough,

rank Rn, N(e) [ 10t−1en.(32)
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Then (26) and (32) imply that the rank and norm conditions (21) and (22)
of Theorem 3.1 are satisfied. In addition, we have by Theorem 1.1 (see also
[17]), since ae and be are continuous,

lim
n, NQ.
n/NQ t

1
N

C
n

j=1
F(lj(Jn, N(e)))=F F(x) d 51

t
F
t

0
w(ae(s), be(s)) ds6

=
1
pt

F
t

0
F
p

0
F(be(s)+2ae(s) cos x) dx ds.

for every F ¥ C0.
From (23) and (24) it next follows that for every fixed x, the functions

F(b(s)+2a(s) cos x) and F(be(s)+2a(s) cos x) are equal for s ¥ [0, t]
except for a set of measure less than 2e. This easily implies that for F ¥ C0,

: 1
pt

F
t

0
F
p

0
F(be(s)+2ae(s) cos x) dx ds −

1
pt

F
t

0
F
p

0
F(b(s)+2a(s) cos x) dx ds :

[
1
pt

F
t

0
F
p

0
|F(be(s)+2ae(s) cos x) − F(b(s)+2a(s) cos x)| dx ds

[
4 ||F||.

t
e.

Therefore

lim
eQ 0+

1
pt

F
t

0
F
p

0
F(be(s)+2ae(s) cos x) dx ds

=
1
pt

F
t

0
F
p

0
F(b(s)+2a(s) cos x) dx ds.

Hence all the conditions of Theorem 3.1 are satisfied and we see that

lim
n, NQ.
n/NQ t

1
N

C
n

j=1
F(lj(Jn, N))=

1
pt

F
t

0
F
p

0
F(b(s)+2a(s) cos x) dx ds.

Then Theorem 2.1 follows, since the zeros of pn, N are equal to the eigen-
values of Jn, N. L

We remark that, in the case where a(t) and b(t) are Riemann integrable
on any bounded interval, Theorem 2.1 proves that the sequence {Jn} is a
Generalized Locally Toeplitz (GLT) sequence in the sense of [16] with
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respect to the kernel bt(x)+2at(x) cos(y). Conversely, our result suggested
a generalization of the definition of GLT sequences which takes into
account measurable kernels and replaces the L1 convergence with the
weaker convergence in measure. For the analysis of this extended notion
we refer the reader to [14] and, more specifically, to Definition 2.3,
Theorem 4.5 and Remark 6.3 in [14].
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